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Justification 

•  Robust space exploration will ultimately 
require “living off the land” 

•  In-Situ propellants and propulsion will reduce 
launch needs 
–  “Near Term” advanced propulsion (chemical, 

nuclear thermal, NEP) require IMLEO ~ 300 – 
1000 mT 

–  Feasibility of launching such masses on a regular 
basis is small 

•  Need to examine potential extraterrestrial 
sources for propulsion 



Concept Description 

•  Utilize onboard power to couple to environment through 
plasma waves 
–  First look: Alfven waves 

•  Observed naturally in astrophysics"
•  Postulated as mechanisms for heating and particle acceleration"

•  Radiate wave energy directionally to produce motion 
–  Antennae designed to couple to correct wave and direction 
–  Thrust ~ Wave field energy 
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APPROACH 



Analysis Approach 

•  Develop physical models for wave production/
propulsion 

•  Assess possible environments 
•  Model wave propagation in relevant 

environments (Ray tracing) 
•  Use propagation results in system design 

(ANTENA rf plasma code) 
–  Antenna size 
–  Antenna loading (power) 
–  Thrust 



Alfven Wave Physics 
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ω = k VA

•  Low frequency waves in 
magnetized plasmas 

•  3 modes: 
–  Shear (|| B) 
–  Compressional (isotropic) 
–  Magnetoacoustic (    B) 

•  Observed in terrestrial, Jovian, 
and Solar magnetospheres 
–  Offered as possible explanation for 

coronal heating, acceleration of solar 
wind, Io plasma torus interactions 
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•  Dispersion relation gives wavelength and frequency 
as functions of environment (B, ρ) 

•  Wavelength (k) depends on position through magnet 
and density fields 

•  Ray tracing follows wave energy as it propagates in 
magnetosphere 

•  Requires representative initial conditions 
–  (x,y,z), (kx, ky, kz) 

Ray Tracing Approach 
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Magnetosphere Models 

•  Standardized simplified model for dipole fields allows 
calculation structure to be applied to multiple 
environments 
–  Jovian and Terrestrial environments described to date 
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Jovian Magnetosphere 

•  Dipole strength ~ 4 
nT Rj3 

•  Plasma density curve 
fit from literature 

•  Using  a simplified 
dispersion relation, 
calculate ω, and k for 
initial conditions 

•  Use full fields model 
for ray tracing 
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Antenna Modeling 

•  Antennas determine the dominant axial 
and perpendicular wavelengths launched 
– Antenna design determines types of fields 

•  E, B - Axial, radial, azimuthal"
– Antenna dimensions determine dominant 

wavelengths 
•  The desired wavelengths are determined 

from local B and density values 
 



ANTENA Code 

•  Warm plasma cylindrical wave code 
•  Originally designed for fusion wave heating 

applications 
–  Radial profiles of ne, Te (not self consistent) 
–  Axially uniform B0, ne  
–  Uses real antenna designs/wavelength spectra 
–  Calculates radiated power, antenna/plasma coupling 

•  Can apply ANTENA to the calculated local 
plasma parameters to determine best 
antenna size, design for the wave propulsion 
application 



First Antenna Design Considered 

•  Phased 
semicircles in 
parallel 

•  Potential for 
changing kz 
with phasing of 
current in the 
loops 

•  Considered  
± π, π/2, π/4 
phasing of 
loops 
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RESULTS 



Ray Tracing Analysis 

•  Ray tracing analysis generated from first principles in 
Mathematica 

•  Initial conditions generated for multiple Alfven modes 
throughout terrestrial and Jovian magnetosphere 
–  Fast modes also depend on k⊥ - assumed to be ≈ kz 

for initial calculations 
•  Wave propagation was been examined throughout the 

magnetospheres 
–  Parallel and perpendicular waves observed 
–  Currently examining results for resonance 

absorption and reflections 



Ray tracing initial conditions 

•  Spatial locations 
span a range of 
conditions  
–  (2 Rj < r < 25 Rj) 

•  Corresponding 
wavelengths (kz, 
k⊥) calculated as 
function of position 
for each of the 3 
modes 

•  Full wave equation 
allows for mode 
conversion 
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Ray Tracing in Earth and Jupiter 
Magnetospheres 

Jupiter  Earth 



Ray Tracing in Earth and Jupiter 
Magnetospheres 

Jupiter  Earth 
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Antenna System 

•  Initial conditions indicate large antenna 
dimensions, ~ 10 – 100’s km 

•  Some representative antenna in that 
size range have been modeled in the 
ANTENA code, using Jupiter 
magnetospheric B and density values 

•  Currently examining the effects of 
antenna size on coupling 



Antenna Length studies 

•  Assumes  
–  Fixed diameter: 500 m 
–  Vary length from 500 – 

 
1000 km, examine 
antenna loading, power 
deposition with kz 
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Wave Fields from 2 Antenna Designs 

Short Antenna Long Antenna 
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Force Estimation for Initial Antenna Designs 

•  Net thrust is if both ends of antenna are left 
open to environment 

•  Short antenna provides greater net thrust 

  Forces (N)   

Antenna Left Right Net  
( positive) 

Thrust 
Density  
(N/m2) 

Short 703 480 -223 1.1 x 10-3 

Long 399 402 2.53 1.3 x 10-5 



Summary of Results 

•  Ray tracing has shown feasibility of wave propagation 
–  Different modes propagate in different directions depending 

on kz, k⟂ 
–  Some regions show potential for standing wave formation 

•  Antenna coupling shows the scale and efficiency of the 
process 
–  100’s of km scale antenna necessary for magnetospheric 

environment 
–  Narrow antenna diameter decreases coupling efficiency 

•  For antenna design considered: 
–  100’s N thrust levels generated at currents 

•  Corresponds to mN/m2; lower than ion engine"

–  Poor coupling leads to low efficiency 



Future Work 

•  Refine antenna designs 
•  Assess non-linear wave (“PIT”) option 
•  Apply analysis to helicon (Whistler) 

waves 



Establish Potential Environments 

•  First approximation 
Magnetospheres 
–  Dipole magnetic field 
–  Axisymmetric density 
–  Uniform Te 

•  Calculate simplified 
local k for ray tracing 

•  Assess ray 
propagation in 
spatially varying fields 
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Antenna Design Trades 

•  Coupling spectra for antennae of 
varying length and pitch 
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